Revised Key to the Nearctic Species of Chrysocharis Förster (Hymenoptera: Eulophidae), Including Three New Species

Christer Hansson
Department of Systematic Zoology, Lund University, Helgonavägen 3, S-223 62 Lund, Sweden

Abstract

The Nearctic species of Chrysocharis are keyed, altogether 63 species. The paper includes the description of three new species: wahli, cornigera, sentenaca and two new combinations from Chrysocharis to Omphale Haliday: varia Hansson, gracilicornis Hansson.

The Nearctic and Neotropical species of Chrysocharis were revised by Hansson (1987). Sixtyone (61) species were treated and 18 of the species were described as new. From the Nearctic region 57 species were recognized. However, the key for the identification of the species is difficult and laborious to use, mainly because too many characters are used under each item, and characters used in the two alternatives under each item are not always exclusively the same. To improve the key I have rearranged it so that the most obvious characters are used first, and under each item only 1-2 characters are used-only occasionally are more than two characters used. The characters selected are those easy to see and that vary as little as possible. In some cases a species varies in characters used, and this species is found under both alternatives.

In the revised key I have also included changes that has taken place since the publication of the previous key: Entedon imbrasus Walker has been transferred to Chrysocharis from Neochrysocharis Kurdjumov (Hansson in press); the species treated as Zaommomyia Girault by Hansson (1986) have been transferred to Chrysocharis (Schauff 1991). The three species described as new in this paper are also included. Furthermore, two species regarded as Chrysocharis by Hansson (1987) are hereby transferred to Omphale Haliday: gracilicornis Hansson, varia Hansson, both n. comb.

The page number after each species in the revised key refers to Hansson (1987). The descriptions, diagnoses, distribution and hosts of Nearctic species of Chrysocharis are found in Hansson $(1985,1986,1987)$.

RECOGNIZING CHRYSOCHARIS

To facilitate the recognition of Chrysocharis, following should be helpful. Antenna with apical two segments fused, or with all flagellar segments free (exception: imbrasus with three apical segments fused, recognized as a Chrysocharis through the long postmarginal vein- $1.5 \times$ stigmal vein-and antennal scrobes join below frontal suture in female). Clypeus not delimited (exception: flaviclypeus, recognized as a Chrysocharis through female antennal scrobes that join below frontal suture). Postmarginal vein longer than stigmal vein (exception wahli \&cornigera, recognized as members of Chrysocharis through the possession of the three abovementioned characters). Without a sulcus surrounding ocellar triangle (this separates Chrysocharis from Derostenus).

TERMINOLOGY AND ABBREVIATIONS

The terms used in the key and in the text are indicated on Figs 1-8.

Abbreviations of collections: $\mathrm{CNC}=\mathrm{Ca}-$ nadian National Collection of Insects and Arachnids, Ottawa; LUZM = Lund University Zoological Museum; TAMU= Texas A\&M University, College Station.

KEY TO NEARCTIC SPECIES OF CHRYSOCHARIS

$$
\text { 1. Flagellum with all five segments free (e.g. Figs } 35,39 \text {) }
$$

- Flagellum with apical two or three segments fused, i.e. the constrictions between the basal funicular segments are narrower than the constrictions between the apical seg- ments (e.g. Figs 37, 38) 19

2. Forewing with a complete row of setae on underside of costal cell (Figs 48, 49) 3

- Costal cell without row of setae 4

3. Forewing speculum closed (Fig. 49); 5th flagellar segment (including the narrow tip) $1.3 \times$ as long as 4th segment (Fig. 35) C. chilo (Walker) (female, male) p. 30

- Forewing speculum open laterally (Fig. 48); 5th flagellar segment $0.9-1.0 \times$ as long as 4th segment (Fig. 36) C. pilosa Delucchi (female, male unknown) p. 30

4. Pronotal collar with a transverse carina-at least on median pronotum-parts of pro- notum behind carina smooth and shiny (Fig. 87) 5

- Pronotum without transverse carina, hind margin of pronotum at most with a very narrow smooth strip (Fig. 86) 7

5. Petiole longer than wide (Fig. 62) C. acoris (Walker) (female, male) p. 64

- Petiole at most as long as wide (Figs 56,59) 66. Scape and pedicel bright orange-yellow; clypeus pale yellow
C. illustris Graham (male) p. 59- Scape whitish or pale brown, pedicel brown; clypeus metallic bluish-green
C. occidentalis (Girault) (female, male) p. 54

7. Propodeal callus with 2 setae 8

- Propodeal callus with at least 3 setae 14

8. Petiole pale; male flagellar segments with a single whorl of setae at the base of each segment (Fig. 42) .C. beckeri Yoshimoto (female, male)

- Petiole dark; male flagellar segments also with setae in middle and at apex 9

9. Propodeum with 2 complete and parallel submedian grooves (Fig. 84)
C. sulcata (Hansson) (female, male)- Propodeum without such grooves10
10. Forewing speculum open below (Fig. 47) C. vonones (Walker) (female, male)

- Forewing speculum closed below 11

11. Scape bright orange-yellow; reticulation on thoracic dorsum fine and engraved
C. fulviscapus Hansson (male, female unknown) p. 45

- Scape whitish or brown; reticulation on thoracic dorsum raised and strong 12

12. Occipital margin with a complete (reaching from eye to eye), high and sharp carina (Fig. 91); frontal suture raised C. Iiriomyzae Delucchi (male) p. 26

- Occipital margin without a complete carina; frontal suture not raised 13

13. All femora predominantly dark C. phytomyzivora Hansson (male) p. 20

- Femora pale C. cerodonthae Hansson (male) p. 21

14. Petiole longer than length of median propodeum (Fig. 85) C. viridis (Nees) (male) p. 29

- Petiole at most as long as length of median propodeum 15

15. Postmarginal vein $3.0-3.5 \times$ as long as stigmal vein 16

- Postmarginal vein $2.0-2.5 \times$ as long as stigmal vein 17

16. Petiole about as long as median propodeum; dorsellum usually excavated and dividedin two parts by a median carina and hind part with a median incision (Fig. 69)
C. entedonoides (Walker) (female, male) p. 28

- Petiole shorter than median propodeum; dorsellum convex to flat, without median in- cision and carina (Fig. 63) C. amyite (Walker) (female, male) p. 28

17. Hind coxa conspicuously long and slender, about $2.5 \times$ as long as wide (Fig. 52); petiolarforamen triangularC. longicoxa Hansson (male) p. 26

- Hind coxa stouter, about $1.5 \times$ as long as wide; petiolar foramen semicircular to qua-drangular18

Figs. 1-8. Terminology. 1, beckeri, female: $\mathrm{cc}=\mathrm{costal}$ cell; $\mathrm{dm}=$ dorsellum; $\mathrm{m}=$ marginal vein; $\mathrm{ml}=$ midlobe; $\mathrm{msc}=$ mesoscutum; om = occipital margin; $\mathrm{OOL}=$ ocell-ocular line; $\mathrm{pc}=$ propodeal callus; pet $=$ petiolus; $\mathrm{pm}=$ postmarginal vein; $\mathrm{POL}=$ postocellar line $; \mathrm{POO}=$ distance between hind ocelli and occipital margin; prm=
18. Petiole as long as wide (as in Fig. 77); femora usually pale-in a few specimens pre- dominantly dark C. avia Hansson (female, male) p. 28

- Petiole transverse (Fig. 80); femora always predominantly darkC. phytomyzivora Hansson (male) p. 20

19. Flagellum with apical three segments fused (Fig. 41)
C. imbrasus (Walker) (female, male unknown)

- Flagellum with apical two segments fused 20

20. Forewing with a complete row of setae on underside of costal cell (as in Figs 48, 49)
C. robusta Yoshimoto (female, male) p. 62

- Costal cell without row of setae 21

21. Pronotal collar with transverse carina-at least on median pronotum (Fig. 87) 22

- Pronotum without transverse carina (Fig. 86) 55

22. Flagellum yellow; frontal suture missing (Fig. 26) C. zvalleyi Yoshimoto (male) p. 60

- Flagellum brown; frontal suture present 23

23. Petiole at least $1.5 \times$ as long as wide 24

- Petiole at most as long as wide 26

24. Malar space very narrow, $1 / 15$ the width of mouth opening (Fig. 92); frontal suture smoothly curved; with a procession between antennal toruliC. prodice (Walker) (female, male) p. 65

- Malar space not as narrow, 1/7 the width of mouth opening (Fig. 93); frontal suture more straight; without procession between toruli 25

25. Occipital margin with a low sharp carina; propodeal callus with 2 (3) setae; female frons above fork usually with rather strong reticulation; male frons smooth or with weak reticulation C. acoris (Walker) (female, male) p. 64

- Occipital margin rounded and smooth (in a few cases with a very weak carina); pro-podeal callus with 4-5 (3) setae; female frons above fork smooth or with very weakreticulation (male unknown)26. Propodeum with a strong and complete median carina (Fig. 58)
C. walleyi Yoshimoto (female) p. 60
- Propodeum without a complete median carina 27

27. Posteromedian part of propodeum with two submedian, slightly curved carinae (Fig. 70); male pedicel bright orange-yellow C. gemmia (Walker) (female, male) p. 59

- Posteromedian propodeum without carinae, or with 2-6 short and straight carinae (e.g.Fig. 73); male pedicel brown or whitish28

28. Anteromedian part of propodeum with a wide and strong median carina-reaching half the length of propodeum and then dividing into 2 weaker carinae which diverge towards the hind edge of propodeum (Fig. 73) C. illustris Graham (female) p. 59

- Median carina on anteromedian part of propodeum weaker or missing 29

29. Clypeus partly or completely pale yellow 30

- Clypeus completely dark and metallic 31

30. Reticulation on thoracic dorsum very dense and strong, almost like punctulation; pro- podeal callus with 5 setae C. flaviclypeus Hansson (female, male unknown) p. 63
propodeum; $\mathrm{prn}=$ pronotum; $s=$ stigmal vein; $s c u=$ scutellum; $s l=$ sidelobe; $s p e=$ speculum; sul $=$ spiracular sulcus. 2 , collaris, female: $\mathrm{pcl}=$ pronotal collar. 3, Antenna, compressicornis, female: an= anelli; cla $=$ clava; fla $=$ flagellum; fun= funiculus; MPS = multiporous plate sensilla; $\mathrm{fcl}=$ pedicel; sca= scape. 4 , Head, side view, phytomyzivora, female. 5, Head, front view, clarkae male: cly= clypeus; fs= frontal suture; he = height of eye; $\mathrm{mo}=$ width of mouth opening; $\mathrm{ms}=$ width of malar space; $\mathrm{scr}=$ antennal scrobes; tor $=$ antennal toruli. 6 , Mesothorax, side view, longicoxa, female: $\mathrm{b}=$ borderline between upper and lower mesepimeron. 7, Meso +metathorax, side view, tristis, female: $b=a$ in Fig. $6 ; c_{2}=$ mid coxa; $c_{3}=$ hind coxa; $p c=$ propodeal callus. 8, mediana, female: $\mathrm{pf}=$ petiolar foramen.

Figs. 9-15. Chrysocharis n.spp. 9-12. comigera. 9, Head, side view, female. 10, Head, front view, female. 11, Head, dorsal view, female. 12, Antenna, male. 13-15. wahli. 13, Head, side view, female. 14, Head, front view, female. 15, Antenna, male.

Figs. 16-26. Head, front view. 16-17, ainslici, female. 18, Ditto, male. 19, oscinidis, female. 20, Ditto, male. 21, chromatomyiae, female. 22 , Ditto, male. 23 , perditor, female. 24 , Ditto, male. 25 , amasis, female. 26 , walleyi, male.

Figs. 27-40. 27, Head, front view, tristis, female. 28, Ditto male. 29, Head. lateral view, coptodiscae, male. 30, Ditto, pallidigaster, female. 31, Ditto, submutica, male. 32, Head, dorsal view, occidentalis, female. 33, Ditto, coptodiscae, female. 34-40. Antennae. 34, occidentalis, female. 35, chilo, female. 36, Apical 2 flagellar segments, pilosa, female. 37, coptodiscae, female. 38, liriomyzae, female. 39, Ditto, male. 40, Flagellum, compressicornis, male.

Figs. 41-56. 41-45. Antennae. 41, imbrasus, female. 42, beckeri, male. 43, pubens, male. 44, polyzo, female. 45, prodice, female. 46, Forewing, paradoxa. 47-49. Base of forewing. 47, vonones. 48, pilosa. 49, chilo. 50-52. Hindleg from coxa to basal tibia. 50, occidentalis. 51, coptodiscae. 52, longicoxa. 53, Hindleg, polita. 54, Gaster, laomedon, female. 55, Ditto, longigaster, female. 56, Petiole+ gaster, illustris, male.

Figs. 57-72. 57, Body, dorsal view, acutigaster, female. 58, Propodeum + petiole + gaster, walleyi, female. 5961. Mesosoma+petiole, female. 59, occidentalis. 60, mediana. 61, polita. 62-71. Propodeum + petiole, female. 62, acoris. 63, amyite. 64, assis. 65, cerodonthae. 66, chromatomyiae. 67, clarkae. 68, crassiscapus. 69, entedonoides. 70, gemma. 71, giraulti. 72, Petiole, side view, clarkae.

Figs. 73-85. Propodeum+petiole, female. 73, illustris. 74, laricinellac. 75, nepherens. 76, nitetis. 77, orbicularis. 78, oscinidis. 79 , pentheus. 80 , phytomyzivora. 81 , polyzo. 82 , pubicornis. 83 , purpurea. 84 , sulcata. 85 , viridis.

- Reticulation on thoracic dorsum weak; propodeal callus with 2 setae
C. aluta Yoshimoto (female, male) p. 58

31. Anteromedian part of propodeum with a round to triangular fovea bordered by a raised edge (Fig. 83), fovea not divided by a median carina; propodeal callus with 3-4 setae
C. purpurea Bukowski (female, male) p. 58

- Anteromedian part of propodeum either with carinae shaped like a V, Y or a T (turned upside-down) (e.g. Figs 74, 76), or with two submedian pits (e.g. Fig. 75); propodeal callus with 2 setae 32

32. Females, i.e. gaster widest close to base or in the middle and with apex pointed or rounded (e.g. Figs 1,54), scape comparatively narrow, $4.3-5.1 \times$ as long as wide 33

- Males, i.e. gaster narrow at base and gradually becoming wider towards apex (Fig. 56), scape comparatively wide, $3.1-3.3 \times$ as long as wide 45

33. Gaster long-ratio length of mesosoma/length of gaster $=0.6-0.7$-more or less parallel- sided and with hind part pointed (Fig. 54) 34

- Gaster shorter—ratio m / g at the lowest 0.8 but usually 1.0 -and oval-shaped with hind part rounded 35

34. Malar space very narrow-about $1 / 8$ the width of mouth opening (Fig. 97); fore coxa predominantly pale C. laomedon (Walker) p. 57

- Malar space wider-about $1 / 4$ the width of mouth opening; fore coxa dark and metallic
C. elongata (Thomson) (male unknown) p. 56

35. Scutellum with engraved reticulation; flagellum stout, flagellar segments gradually be- coming shorter and wider towards apex (Fig. 37) C. coptodiscae Yoshimoto p. 53

- Scutellum with raised reticulation; flagellum slender (e.g. Fig. 34) 36

36. Scutellum flattened; anteromedian part of propodeum with two submedian pits (Fig. 75)
C. nephereus (Walker) p. 52

- Scutellum convex; anteromedian part of propodeum with carinae shaped like a V, Y ora T37

37. Transverse pronotal carina weak and present only on median part of pronotum 38

- Transverse pronotal carina strong and present along the major part of pronotum 40

38. Hind femur conspicuously stout, $2.5 \times$ as long as wide (Fig. 50); malar space narrower than width of scape C. occidentalis (Girault) p. 54

- Hind femur slender, $4.0 \times$ as long as wide (as in Fig. 51); malar space at least as wide as width of scape 39

39. Malar space as wide as width of scape (Fig. 30); frons below suture golden-red
C. pallidigaster Hansson p. 49

- Malar space $1.5-2.0 \times$ as wide as width of scape (Fig. 31); frons below suture usually purple C. submutica Graham p. 49

40. Malar space narrower than the width of scape 41

- Malar space at least as wide as width of scape 42

41. Petiole as long as wide, with protruding forecorners (Fig. 64) C. assis (Walker) p. 64

- Petiole transverse, without protruding forecorners (as in Fig. 79)
C. paradoxa Hansson p. 58

42. Pronotal collar long (Fig. 2); occipital margin with a carina behind ocellar triangle
C. collaris Graham p. 52

- Pronotal collar shorter (Fig. 87); occipital margin without carina 43

43. Meshes of reticulation with about the same size over entire frons (Fig. 95); scutellum distinctly elongate-ratio length/width= 1.2 C. Iaricinellae (Ratzeburg) p. 50

- Reticulation on frons below suture usually with larger meshes than on frons above suture (as in Fig. 96); scutellum about as long as wide 44

44. Raised surface of petiole small (Fig. 79); hind femur completely white or very pale brown at base C. pentheus (Walker) p. 51

- Raised surface of petiole larger (Fig. 76); hind femur usually predominantly dark
C. nitetis (Walker) p. 51

45. Third anellus large (e.g. as in Fig. 37) 4. Third anellus lage (e.g. as in Fig. 37) C. assis (Walker) p. 64

- Third anellus small and discoid 46

46. Gaster with a pale subbasal spot C. pallidigaster Hansson p. 49

- Gaster without a pale subbasal spot 47

47. Malar space narrow-about $0.3 \times$ as wide as width of scape 48

- Malar space wider-at least $0.5 \times$ as wide as width of scape 49

48. Propodeum with a complete median carina or with 2 weak, complete and parallel carinae
C. Iaomedon (Walker) p. 57

- Propodeum without longitudinal carinaeC. paradoxa Hansson p. 58

49. Transverse carina along pronotum present and complete 50

- Transverse carina along pronotum weak and incomplete 54

50. Scutellum flattened and about as long as wide; reticulation on scutellum small-meshed (Fig. 88) C. nephereus (Walker) p. 52

- Scutellum distinctly longer than wide 51

51. Forewing subtruncate (as in Fig. 46) C. paradoxa Hansson p. 58

- Forewing rounded apically 52

52. Eyes $4.5 \times$ as high as width of malar space (Fig. 94)
C. laricinellae (Ratzeburg) (spring generation) p. 50- Eyes $5-7 \times$ as high as malar space (as in Fig. 96)53
53. Entire frons with small-meshed reticulation (as in Fig. 95)
C. laricinellae (summer generation) p. 50

- Frons below suture with larger meshes than above suture (Fig. 96)
C. pentheus/C. nitetis (inseparable) p. 51

54. Malar space as wide as width of scape; temples comparatively large and eyes compar- atively small, width of temples at lower edge of eyes $0.15 \times$ the height of an eye (Fig.31)C. submutica Graham p. 49

- Malar space only $0.5 \times$ as wide as width of scape; temples smaller and eyes larger, width of temples at lower edge of eyes $0.07 \times$ the height of an eye (Fig. 29)
C. nephereus/C. coptodiscae (inseparable) p. 52-53

55. Propodeum with two complete parallel submedian grooves (Fig. 84)
C. sulcata (Hansson) (female, male)

- Propodeum without complete longitudinal grooves 56

56. Petiole distinctly longer than wide (at least $1.4 \times$ as long as wide) 57

- Petiole usually at most as long as wide 63

57. Frontal suture absent (Figs 23, 24) C. perditor Hansson (female, male) p. 38

- Frontal suture present58

58. Petiole with a pair of medio-lateral horns (Fig. 85); propodeum with $2-5$ setae inside spiracular sulci C. viridis (Nees) (female) p. 29

- Petiole with a pair of antero-lateral horns (Fig. 71); propodeum without setae inside spiracular sulci 59

59. Scape completely pale; postmarginal vein only $1.3 \times$ as long as stigmal vein
C. gibsoni Hansson (female, male) p. 38

- Scape with at least apical part infuscate; postmarginal vein $2 \times$ as long as stigmal vein 60

60. Frontal suture down-curved (Figs 27, 28); speculum open below (as in Fig. 47)
C. tristis Hansson (female, male) p. 41

- Frontal suture curved upwards or straight; speculum closed below (a few specimens have an open speculum) 61

61. Petiole at least $2 \times$ as long as wide C. ignota Hansson (female, male) p. 39 62- Petiole less than $2 \times$ as long as wide
62. Dorsellum comparatively short and wide, $6.5 \times$ as wide as long (Fig. 71); dorsal surface of petiole concave in sideview C. giraulti Yoshimoto (female, male) p. 35

- Dorsellum longer, $3 \times$ as wide as long (Fig. 78); dorsal surface of petiole straight in sideview63. Petiole pale, as long as wide64
- Petiole dark, as long as wide to transverse 65

64. Frontal suture almost straight; thoracic dorsum with weak reticulation
C. minuta (Hansson) (female, male)- Frontal suture V-shaped; thoracic dorsum with strong reticulationC. beckeri Yoshimoto (female, male)
65. Clypeus pale yellow C. flaviclypeus Hansson (female, male unknown) p. 63

- Clypeus dark and metallic 66

66. Mouth opening wider than height of an eye-ratio width of mouth/height of eye $=1.1$ C. kimamaensis Hansson (female, male unknown) p. 45

- Mouth opening narrower than height of an eye 67

67. Lateral parts of frontal suture raised to form two conspicuous horns (Figs 9-11)
C. comigera n.sp. (female, male)

- Frontal suture not raised, or in one species (liriomyzae) with entire frontal suture slightly raised 68

68. Anteromedian part of propodeum without carinae, a fold or a pit (e.g. Fig. 8) 69

- Anteromedian part of propodeum with carinae, a fold or a pit 72

69. Propodeum with a complete median carina C. vonones (Walker) (female, male) le)

- Propodeum smooth, without median carina 70

70. Forewing with an infuscate spot below stigmal vein; postmarginal vein as long as stigmal vein; male pedicel pale C. zuahli n.sp. (female, male)

- Forewing hyaline; postmarginal vein twice as long as stigmal vein; male pedicel dark 71

71. All femora usually predominantly dark and metallic; hind femur comparatively slender,$3.5 \times$ as long as wide; mesosoma comparatively slender, $1.6 \times$ as long as wide (Fig. 60)
C. mediana Förster (female, male) p. 48

- Femora completely pale; hind femur conspicuously stout, $3.2 \times$ as long as wide (Fig. 52)mesosoma comparatively stouter, $1.4 \times$ as long as wide (Fig. 61)
C. polita (Howard) (female, male) p. 48

72. Anteromedian part of propodeum with a single median pit (e.g. Figs 57, 67, 78) 73

- Anteromedian part of propodeum with carinae shaped like a Y or a T (turned upside- down) (e.g. Fig. 68), a fold (e.g. Fig. 59), two submedian pits (e.g. Fig. 75), or a raised peak 88

73. Petiole very short, less than half as long as wide (Figs 8,57) 74

- Petiole longer, at least as long as wide (e.g. Figs 78, 81) 76

74. Hind part of anteromedian fovea on propodeum considerably raised; female with an- tennal clava distinctly wider than first 2 funicular segmentsC. acutigaster Hansson (female, male) p. 22

- No part of anteromedian fovea on propodeum conspicuously raised; female with entire flagellum uniformly slender 75

75. All femora usually predominantly dark and metallic; hind femur comparatively slender, $3.5 \times$ as long as wide; mesosoma comparatively slender, $1.6 \times$ as long as wide (Fig. 60)
C. Itediana Förster (female, male) p. 48

- Femora completely pale; hind femur conspicuously stout, $3.2 \times$ as long as wide (Fig. 52); mesosoma comparatively stouter, $1.4 \times$ as long as wide (Fig. 61)C. polita (Howard) (female, male) p. 48

76. Anteromedian fovea on propodeum very wide-several times wider than long (as in Fig. 1) C. vonones (female, male)

- Anteromedian fovea on propodeum about as long as wide 77

77. Borderline between upper and lower mesepimeron straight (Fig. 7); petiolar foramen with a large membrane in upper part (Fig. 77) 78

- Borderline between upper and lower mesepimeron at least slightly curved (Fig. 6); petiolar foramen with a very small membrane in upper part, or without membrane81

78. All coxae pale-fore coxa sometimes infuscate in upper half
C. subcircularis Yoshimoto (female, male) p. 33

- At least some, usually all coxae dark and metallic
- At least some, usually all coxae dark and metallic 79 79

79. Forewing with speculum open below (as in Fig. 47); female gaster long-ratio length of mesosoma / length of gaster $=0.8$, with hind part pointed (Fig. 55)
C. longigaster Hansson (female, male unknown) p. 32

- Forewing with speculum closed; female gaster shorter-ratio length of mesosoma/ length of gaster $=1.2-1.3$, with hind part less pointed 80

80. Eyes comparatively small, height of eye $4.0-7.0 \times$ the width of malar space in female, $2.6 \times$ in male (Figs 16-18); femora usually predominantly dark, but occasionally pale; postmarginal vein frequently less than $2 \times$ as long as stigmal veinC. ainslici Crawford (female, male) p. 31

- Eyes comparatively large, height of eye $9.3 \times$ the width of malar space in female, $6.3 \times$in male (Figs 19, 20); femora pale; postmarginal vein $2 \times$ as long as stigmal vein
C. oscinidis Ashmead (female, male) p. 34

81. Frontal suture raised; with an interantennal process between toruli (Fig. 89); mouth opening with an incision below eye (Fig. 90)C. liriomyzae Delucchi (female) p. 26

- Frontal suture not raised; without process between toruli; mouth opening without inci-sion82

82. Petiole with raised surface quadrangular (Fig. 81) (shape varying from trapezoid, qua- dratic to rectangular) C. polyzo (Walker) (female, male) p. 22

- Raised surface of petiole not quadrangular (e.g. Figs 66, 67) 83

83. Hind coxa long and slender, about $2.5 \times$ as long as wide (Fig. 52); propodeal callus with $5-8$ setae; petiolar foramen triangula C. longicoxa Hansson (female, male) p. 26

- Hind coxa stouter, about $1.5 \times$ as long as wide; propodeal callus with $2-4$ (some speci- mens of clarkae have 5) setae; petiolar foramen rounded or quadrangular 84

84. Flagellum thick, about $2 \times$ as wide as width of scape (Figs 3, 40); each flagellar segment with MPS in two transverse rowsC. compressicomis Ashmead (female, male) p. 16

- Flagellum more slender, at most $1.5 \times$ as wide as width of scape; each flagellar segmentwith MPS in one transverse row85

85. Petiole with protruding forecorners, usually as long as wide (shorter than wide in males) (Figs 66, 67) 86

- Petiole without protruding forecorners, shorter (Figs 65, 80) 87

86. Raised surface of petiole considerably raised, with coarse sculpture-which is situated at a much higher level than protruding forecorners (Fig. 72); propodeal callus with 3 (4- 5) setae C. clarkae Yoshimoto (female, male) p. 23

- Raised surface of petiole lower, with strong punctures or irregular sculpture (finer than in clarkae), top of surface closer to forecorners; propodeal callus with 2 setae87. Femora predominantly darkC. phytomyzivora Hansson (female) p. 20
- Femora pale C. cerodonthae Hansson (female) p. 21

88. Anteromedian part of propodeum raised in a peak; hind coxa long and slender, $2.5 \times$ as long as wide (Fig. 52) C. longicoxa Hansson (female, male) p. 26

- Anteromedian part of propodeum with raised carinae (Fig. 82); hind coxa stouter, $1.5 \times$ as long as wide 89

89. With a fine median groove on posterior part of midlobe of mesoscutum and anterior scutellum C. crassiscapus (Thomson) (female, male) p. 18

- Without median groove on mesoscutum and scutellum 90

90. Propodeal callus with 3-4 setae C. pubicomis (Zetterstedt) (female, male) p. 16

- Propodeal callus with 2 setae 91

91. Flagellum thick, about $2 \times$ as wide as width of scape (Figs 3,40); each flagellar segmentwith MPS in two transverse rowsC. compressicornis Ashmead (female, male) p. 16

- Flagellum more slender, at most $1.5 \times$ as wide as width of scape; each flagellar segmentwith MPS in one transverse row92

92. Forewing with speculum open below (as in Fig. 47) C. gemina Hansson (male) p. 56

- Forewing with speculum closed below 93

93. Females, i.e. with gaster widest close to base or in the middle and with apex pointed or rounded (e.g. Fig. 54); scape comparatively narrow, $4.3-5.1 \times$ as long as wide 94

- Males, i.e. with gaster narrow at base and gradually becoming wider towards apex (Fig. 56); scape comparatively wide, $3.1-3.3 \times$ as long as wide 100

94. Hind femur conspicuously stout, $2.5 \times$ as long as wide (Fig. 50); malar space narrower than width of scape C. occidentalis (Girault) p. 54

- Hind femur slender, $3.9 \times$ as long as wide (as in Fig. 51); malar space at least as wide as width of scape 95

95. Malar space $1.5-2 \times$ as wide as width of scape 96

- Malar space as wide as width of scape 98

96. Postmarginal vein only $1.3 \times$ as long as stigmal vein C. gemina Hansson p. 56

- Postmarginal vein $2 \times$ as long as stigmal vein 97

97. Eyes and ocelli larger, ratio height of eye/width of mouth $=2.1$, distance between hind ocelli $2 \times$ width of one ocellus C. submutica Graham p. 49

- Eyes and ocelli smaller, ratio height of eye/width of mouth $=1.7$, distance between hind ocelli $3.4 \times$ width of one ocellus C. sentenaca n.sp.

98. Borderline between upper and lower mesepimeron curved (as in Fig. 6)
C. griffithsi Hansson p. 17

- Borderline between upper and lower mesepimeron straight (as in Fig. 7) 99

99. Scutellum flattened (Fig. 87) C. nephereus (Walker) p. 52

- Scutellum convex C. pallidigaster Hansson p. 49

100. Gaster with a pale subbasal spot C. pallidigaster Hansson p. 49

- Gaster without a pale subbasal spot 101

101. Hind pair of ocelli close, distance between them $0.9 \times$ the largest measure of one ocellus (Fig. 32) C. occidentalis (Girault) p. 54

- Hind pair of ocelli further apart, distance between them $2 \times$ the largest measure of one ocellus (as in Fig. 33) 102

102. Malar space as wide as width of scape 103

- Malar space $0.5 \times$ as wide as width of scape 104

103. Thoracic dorsum convex; ocelli larger, distance between hind ocelli $1.8 \times$ width of one ocellus C. submutica Graham p. 49

- Thoracic dorsum flat; ocelli smaller, distance between hind ocelli $3.5 \times$ width of oneocellusC. sentenaca n.sp.

104. Scutellum convex and $1.4 \times$ as long as wide; borderline between upper and lower me-sepimeron curved (as in Fig. 6)C. griffithsi Hansson p. 17- Scutellum flattened and about as long as wide; borderline between upper and lowermesepimeron straight (as in Fig. 7)C. nephereus (Walker) p. 52

DESCRIPTIONS

Chrysocharis wahli n. sp. Figs 13-15

Type material.-Holotype female labelled "USA: California, Santa Barbara County, 18 mi . WNW Cuyama (T11N,

1228 W , sect. 32), 1-7.iii.88, W.E. Wahl, $\mathrm{MT}^{\prime \prime}$, in CNC. Paratypes: 5 females with same label-data as holotype; 3 females "USA: California, San Luis Obispo County, 6 mi SE Pozo, $1500^{\prime}, 26 . i i i-9 . i v .90$, W.E. Wahl'; 1 female 2 males with same label as previous but collected 9-21.iv.90; 3 fe-

Figs. 86-91. 86-88. Head + mesosoma, dorsal view. 86, liriomyzae, female. 87, nephereus, female. 88, Ditto, male. 89-91. liriomyzae. 89, Head, front view. 90, Semicircular incision in lateral part of mouth opening. 91, Occipital margin (om).
males in LUZM, remaining in CNC; 1 male "USA: California, San Bernardino County, Summit Valley, 2mi. E Hwy 15, 28.v.1981, J Woolley 81/025" (TAMU).

Etymology.-Named after W.E. Wahl, who ran malaise-traps in California and thereby collected a large material of use to me and other taxonomists.

Diagnosis.-Forewing with an infuscate spot below stigmal vein; postmarginal vein short, as long as stigmal vein; anteromedian part of propodeum smooth; male pedicel pale.

Description.-Length of body: Female= $1.2-1.6 \mathrm{~mm}$, male $=0.9 \mathrm{~mm}$.

Head: Scape pale, remaining antenna
dark; male pedicel pale. Apical 2 segments of flagellum fused (Figs 13, 15). HE/MS/ MO female: 4.6/1.0/2.2, male: 3.0/1.0/1.9. Malar space $1.5 \times$ as wide as width of scape in both sexes. Frons golden-green, with strong and small-meshed reticulation. Frontal suture V-shaped. Vertex metallic greenish-blue, with strong and small-meshed reticulation. Inner orbit of eye with 1 row of setae. POL/OOL/POO: 2.2/1.0/1.2. Occipital margin rounded. Ratio width of head/width of thorax across posterior mesoscutum $=1.1$.

Mesosoma: Pronotum without transverse carina. Mesoscutum and scutellum metallic greenish-blue; with strong and

Figs. 92-97. Head, front view. 92, prodice, female. 93, amasis, female. 94, laricinellae, male, spring generation. 95, Ditto, female, summer generation. 96, pentheus, male. 97, laomedon, female.
small-meshed reticulation; scutellum flattened and about as long as wide. Dorsellum small and convex, $3.4 \times$ as wide as long, with strong reticulation. Borderline between lower and upper mesepimeron
weakly curved. All coxae dark and metallic (fore coxa in some specimens pale with darkmetallic base) with weak reticulation; femora and tibiae pale; tarsi pale with 4th segment dark. Forewing with an infuscate
spot below stigmal vein, rounded with speculum closed, and with a narrow costal cell. Ratios length of M/PM/S: 4.4/1.0/ 1.0. Propodeum golden-green; anteromedian part smooth; surface with weak reticulation; propodeal callus with 2 setae. Petiolar foramen semicircular.

Metasoma: Petiole very short, in dorsal view visible only as a narrow and smooth strip (as in Fig. 75). Gaster golden-green or golden-purple; male with a small pale subbasal spot; with strong and smallmeshed reticulation; oval-shaped in female. Ratio length of mesosoma/length of gaster female $=0.8-0.9$, male $=1.0-1.2$.

Distribution.—USA (California).
Remarks.-This species belongs in the mediana-group, it shares the narrow costal cell in forewing and the smooth anteromedian part of propodeum with the other species in the group.

Chrysocharis comigera $\mathrm{n} . \mathrm{sp}$. Figs 9-12

Type material.-Holotype female labelled "Canada: Alberta, 14 km S S. Saskatchewan River, 1.vi.1981, Thormin, Reaney \& Brouwer, sand dune complex", in CNC. Paratypes: 8 females 12 males with same label-data as holotype, 3 females 5 males in coll. LUZM, remaining in CNC.

Etymology.-cornigera is latin and means "with horns".

Diagnosis.-Lateral parts of frons, including frontal suture, considerably raised to form 2 conspicuous horns (Figs 9-11); clypeus semicircularly protruding; mouth opening with a semicircular incision below eye-mandibles are possible to point straight forward when fitted in these incisions; postmarginal vein short, as long as stigmal vein; propodeal callus with three setae.

Description.-Length of body: Female= $0.9-1.3 \mathrm{~mm}$, male $=1.1-1.3 \mathrm{~mm}$.

Head: Entire antenna dark. Flagellum with 2 apical segments fused (Figs 9, 12). HE/MS/MO female: 4.8/1.0/3.6, male: $2.8 / 1.0 / 2.3$. Clypeus semicircularly pro-
truding; mouth opening with a semicircular incision below eye. Malar space $1.5 \times$ as wide as width of scape in both sexes. Frons below suture golden-purple in female, golden-green in male, both sexes with weak reticulation. Frontal suture straight; lateral parts of frons, including frontal suture, considerably raised to form 2 conspicuous horns (Figs 9-11). Frons above suture and vertex golden-green, golden-red or golden-blue, with weak reticulation. Inner orbit of eye with 1 row of setae. POL/OOL/POO: 2.6/1.8/1.0. Occipital margin with a weak edge. Ratio width of head/width of thorax across posterior mesoscutum $=1.2$.

Mesosoma: Pronotum without transverse carina. Mesoscutum and scutellum golden-green, golden-blue or golden-red-scutellum in some specimens with anterior half purplish; with rather strong to weak reticulation. Dorsellum convex to flat, smooth and with 2 anterolateral foveas. Borderline between lower and upper mesepimeron straight. All coxae dark and metallic with strong reticulation. Femora with basal $1 / 2$ to $4 / 5$ dark, with apical part pale; tibiae pale; tarsi pale with 4 th segment dark. Wings hyaline; forewing rounded with speculum closed. Ratios length of M/PM/S: 6.1/1.0/1.0. Propodeum golden-green; anteromedian part with a small semicircular fovea; surface with rather strong to weak sculpture/reticulation; propodeal callus with 3 setae. Petiolar foramen semicircular.

Metasoma: Petiole slightly transverse (as in Fig. 68). Gaster golden-green; ovalshaped in female. Ratio length of mesosoma/length of gaster both sexes $=0.8-$ 0.9 .

Distribution.-Canada (Alberta).
Remarks.-This species comes closest to pubicornis-group, but differs from the species in this group in the short postmarginal vein and the protruding lateral parts of frons. Therefore I am not prepared to place cornigera in this, or any other, group, but regard it as species sola.

Chrysocharis sentenaca n. sp.

Type material.-Holotype female labelled "USA: California, San Diego County, Sentenac Canyon, 22.iv.1981, J. Woolley $81 / 011^{\prime \prime}$, in TAMU. Paratypes: 1 female 4 males with same label-data as holotype, 1 female 2 males in coll. LUZM, remaining in TAMU.

Etymology.-Named after place where type specimens where collected, Sentenac Canyon in California.

Diagnosis.-Thoracic dorsum flattened; ocelli small.

Description.-Length of body: Female $=$ $1.1-1-3 \mathrm{~mm}$, male $=0.9 \mathrm{~mm}$.

Head: Entire antenna dark. Apical 2 segments of flagellum fused. $\mathrm{HE} / \mathrm{MS} / \mathrm{MO}$ both sexes: $3.6 / 1.0 / 2.2$. Malar space $1.5 \times$ as wide as width of scape in female and $1.0 \times$ in male. Frons metallic purple below suture, metallic greenish-blue above, with strong and small-meshed reticulation. Frontal suture V-shaped. Vertex goldengreen, with weak and small-meshed reticulation. Inner orbit of eye with 1 row of setae. POL/OOL/POO: $2.8 / 1.0 / 1.3$. Occipital margin rounded. Ratio width of head/width of thorax across posterior mesoscutum $=1.2$.

Mesosoma: Pronotum without transverse carina. Mesoscutum and scuteilum golden-green; with rather strong and small-meshed reticulation on mesoscuTum, weaker on scutellum; scutellum about as long as wide. Dorsellum large, $2.9 \times$ as wide as long, and almost flat, with weak reticulation. Borderline between lower and upper mesepimeron weakly curved. All coxae dark and metallic with weak reticulation. Femora and tibiae pale; tarsi pale with 4th segment dark; except weakly infuscate fore tibiae and tarsi. Forewing hyaline, rounded with speculum closed, and with a narrow costal cell.

Ratios length of M/PM/S: 4.1/1.8/1.0. Propodeum golden-green; anteromedian part with a small and weak fold; surface with weak reticulation; propodeal callus with 2 setae. Petiolar foramen semicircular.

Metasoma: Petiole very short, in dorsal view visible only as a narrow and smooth strip (as in Fig. 75). Gaster golden-green or golden-purple; oval-shaped in female. Ratio length of mesosoma/length of gaster female $=0.8-0.9$, male $=0.9$.

Distribution.-USA (California).
Remarks.-C. sentenaca belongs to pen-theus-group and hence has the characters diagnostic for that group (Hansson 1987: 49) and is similar to C. submutica.

ACKNOWLEDGMENTS

Thank you to J.T. Huber (CNC) and an anonymous reviewer for comments on the manuscript. I am also indebted to J.T. Huber and J.B. Woolley (TAMU) for loan of material, and to B. Rasmussen (Zoological Museum, Copenhagen) for SEM-work.

LITERATURE CITED

Hansson, C. 1985. Taxonomy and biology of the Palearctic species of Chrysocharis Förster, 1856 (Hymenoptera: Eulophidae). Entomologica Scandinavica Supplement No. 26:1-130.
Hansson, C. 1986. A revision ot the Nearctic species of the genus Zaommomyia Ashmead (Hymenoptera: Eulophidae). Proceedings of the Entomological Society in Washington 88:244-252.
Hansson. C. 1987. Revision of the New World species of Chrusocharıs Förster (Hymenoptera: Eulophidae). Entomologica Scandinavica Supplement No. 31:1-86.
Itansson, C. 1990. A taxonomic study on the Palearctic species of Chrysonotomyia Ashmead and Neochrysocharis Kurdjumov (Hymenoptera: Eulophidae). Entomologica Scandinavica 21:29-52.
Hansson, C. In press. Revision of the Nearctic species of Neochrysocharis Kurdjumov (Hymenoptera: Eulophidae). Entomologica Scandinavica.
Schauff, M.E. 1991. The Holarctic genera of Entedoninae (Hymenoptera: Eulophidae). Contributions of the American Entomological Institute 26(4):1-109.

